
Journal of Computational Physics 228 (2009) 1391–1403
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Small-angle Coulomb collision model for particle-in-cell simulations

Don S. Lemons a,*, Dan Winske b, William Daughton b, Brian Albright b

a Bethel College, North Newton, KS 67117, United States
b Los Alamos National Laboratory, Los Alamos, NM 87545, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 30 July 2008
Received in revised form 21 October 2008
Accepted 22 October 2008
Available online 5 November 2008

Keywords:
Collision algorithm
Particle-in-cell simulation
Plasma simulations
Numerical methods
Coulomb collisions in plasmas
Stochastic differential equations
0021-9991/$ - see front matter � 2008 Elsevier Inc
doi:10.1016/j.jcp.2008.10.025

* Corresponding author.
E-mail address: lemons.don@gmail.com (D.S. Lem
We construct and investigate a set of stochastic differential equations that incorporate the
physics of velocity-dependent small-angle Coulomb collisions among the plasma particles
in a particle-in-cell simulation. Each particle is scattered stochastically from all the other
particles in a simulation cell modeled as one or more Maxwellians. Total energy and
momentum are conserved by linear transformation of the velocity increments. In two test
simulations the proposed ‘‘particle-moment” collision algorithm performs well with time
steps as large as 10% of the relaxation time – far larger than a particle-pairing collision
algorithm, in which pairs of particles are scattered from one another, requires to achieve
the same accuracy.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Particle-in-cell (PIC) codes represent forces among spatially separate particles by field quantities collected on a spatial
grid. Such codes efficiently model low-density plasma interactions but ignore collisions, that is, the effect of forces among
particles closer than the distance between grid points. When collisions are important the usual PIC code algorithm needs
to be supplemented with a collision model. Binary collisions between charged particles are important in many applications,
such as interpenetrating and stagnating laser-produced plasmas [1]; dense plasmas that slow down, deposit energy, and
equilibrate temperatures [2]; burning plasmas that produce neutrons [3]; and dusty plasmas [4].

Because a pair of interacting particles can easily be made to conserve momentum and energy, the collision model most
widely adopted in PIC codes elastically scatters pairs of computational particles from one another [5]. Because each particle
could scatter from every other particle in the cell the scatterings represented are only a random sample of possible ones.
Cumulative scattering through large angles [6] and particle division and recombination [7] have improved particle-pairing
algorithms. Particle-pairing algorithms have also been vectorized [8] and generalized to allow for weighted particles [9].
More recently, several particle-pairing algorithms have been compared [10] and a new method to speed up such algorithms
by representing the plasma as a combination of Maxwellian distributions and discrete particles has been introduced [11].
The particle-pairing method has been successfully employed in large-scale gyrokinetic and delta-f simulations of cross-field
transport in magnetic fusion systems [12].

Particle-pairing is the most commonly used collision model in plasma simulations, but alternative, faster, collision algo-
rithms have been developed. One of these, the multi-fluid method, treats each species or component as a separate fluid that
couples to every other fluid via plasma slowing down and equilibration rates [13–15]. More recently, Sherlock has developed
. All rights reserved.

ons).

mailto:lemons.don@gmail.com
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


1392 D.S. Lemons et al. / Journal of Computational Physics 228 (2009) 1391–1403
a collision algorithm for modeling electron–ion collisions in hybrid codes where the ions are treated as particles and the elec-
trons as a fluid [16].

Our contribution has developed from the so-called ‘‘collision-field” method in which each particle is scattered only once
each time step from field quantities that represent the collisional effect of other species (inter-species collisions) within the
cell [17]. Collisions among particles of the same species (intra-species collisions) were modeled with solutions to a Langevin
equation. Re-scaling the post-collision particle velocities conserved energy and momentum. The collision-field method is no
noisier than particle-pairing since both methods execute order N collisions each time step where N is the number of particles
per cell. The collision-field method also allows for larger time steps. In its earliest implementation [17], the collision-field
method employed a velocity independent collision rate.

We propose a conceptually simple generalization of the collision-field method that incorporates velocity-dependent col-
lision rates and treats intra- and inter-species collisions with the same algorithm. In order to calculate velocity-dependent
collision rates describing the scattering of a single test particle from an arbitrary distribution of field particles, a multi-
dimensional integral over velocity space must, in principle, be performed. Manheimer et al. reduced this integration to
one requiring a single integration by assuming a spherically symmetric velocity distribution [18]. While interesting, non-
Maxwellian, locally isotropic, particle distributions are a special case.

Instead we assume that the field particles compose one or a small number of drifting isotropic Maxwellians. In this case
the integrations can be completed in terms of standard functions and result in the velocity space diffusion coefficients first
calculated by Chandrasekhar 65 years ago [19] and collected in Lyman Spitzer’s classic text [20]. In particular, we incorporate
Spitzer’s diffusion coefficients into parameters that characterize a set of stochastic differential equations. These stochastic
differential equations are completely equivalent to a Fokker–Planck equation [21]. Solutions to the stochastic differential
equations are the heart of our proposed collision algorithm. We refer to it as the ‘‘particle-moment” method.

2. Collision algorithm

After the electromagnetic fields interpolated from the grid advance each particle in phase space the collision algorithm
advances each particle in velocity space. The application of the particle-moment collision model discussed in this paper
can be summarized with the following series of steps:

1. Choose one particle among the particles in a cell to be the test particle; the remaining particles are its complementary
field particles. Calculate the average particle velocity vf and effective temperature Tf of each species of complementary
field particle having the same mass and charge.

2. Choose one species of complementary field particle. Shift to a local velocity frame in which the average velocity of that spe-
cies vanishes and, consequently, the test particle has a velocity vt � vf where vt and vf are lab frame velocities. Define polar
velocity coordinates of each test particle with respect to the axis pointing in the direction of the difference vector vt � vf.

3. Scatter the test particle in its local frame. Collisions rotate and stretch or compress each velocity difference vector vt � vf.
This transformation is determined by finite difference solutions to stochastic differential equations that incorporate Spit-
zer’s velocity space diffusion coefficients. The latter are a function of the field particle species effective temperature Tf,
mass mf, and charge qf.

4. Allow each particle to be the test particle in turn. Complete steps 1–3 for each.
5. Shift the scattered velocity of each particle back to the lab frame and calculate the lab frame velocity increment Dvi for

each particle i caused by collisions with that species.
6. When more than one species is present repeat steps 1–5 for each species and find the net lab frame velocity increment

Dvi for each particle i caused by collisions with all other particles.
7. Linearly shift all Dvi in such a way that the total momentum and energy of all particles is conserved.

Each step of this algorithm is explained in one or more of the following sub-sections.

2.1. From lab frame to local particle coordinates

One of the N + 1 particles in a cell is chosen as the test particle and the remaining N compose its complementary field
particles. Here we assume that all N field particles have the same mass mf and charge qf. The extension to more than one
field particle species is straightforward.

The average field particle velocity vf in the lab frame is given by
v f ¼
PN

j¼1v fj

N
: ð1Þ
Here vfj is the velocity of the jth field particle. Likewise, the effective temperature of the field particles Tf is given by
3NTf

2
¼
XN

j¼1

mf ðv fj � v f Þ2

2
: ð2Þ



D.S. Lemons et al. / Journal of Computational Physics 228 (2009) 1391–1403 1393
The field particle velocity vf and effective temperature Tf characterize the drifting Maxwellian that is used to determine
velocity space diffusion coefficients.

Every particle can be a test particle and each test particle has its own set of complementary field particles. We describe
the effect of scattering a test particle with mass mt, charge qt, and velocity vt in terms of a velocity difference vector:
x ¼ v t � v f ; ð3Þ
where vf is the average field particle velocity. Scattering a test particle from its complementary field particles shifts both the
orientation and the magnitude of x, that is, scattering a test particle shifts the velocity difference vector from x to x + dx.
We describe dx in terms of changes in polar coordinates (h,/,x) referenced to an axis lying along and pointing in the direc-
tion of x = vt � vf. Pre-scattering test particles have polar coordinates (0,0,x) while post-scattering test particles have polar
coordinates (dh,d/,x + dx). Fig. 1 illustrates these coordinates and their increments.

2.2. Stochastic differential equations

Scattering is a random process. Thus, the differentials, dh, d/, and dx that describe the rotation and stretching or com-
pressing of the test particle velocity difference vector x = vt � vf are differentials of random variables h, /, and x. Conse-
quently, the time evolution of h, /, and x is governed by a set of stochastic differential equations:
dh ¼
ffiffiffiffiffiffiffiffiffiffi
2cdt

q
Nhð0;1Þ; ð4aÞ

d/ ¼ 2pU/ð0;1Þ; ð4bÞ
and
dx ¼ �bxdt þ
ffiffiffiffiffiffiffiffiffiffi
d2dt

p
Nxð0;1Þ: ð4cÞ
where the c, b, and d2 characterize the process. Here Nh(0,1) and Nx(0,1) are temporarily uncorrelated stochastically inde-
pendent normal random variables with mean zero and variance one and U/(0,1) is a temporally uncorrelated uniform ran-
dom variable between zero and one. This notation is familiar from texts on stochastic processes (see, e.g., Refs. [21,22]).

2.3. Collision rates

According to Spitzer [20] the rates at which a test particle with initial speed xo collisionally interacts with a field particle
species whose average velocity vanishes are described by
d
dt
hvzi

� �
o

¼ �l2
f AD 1þmt

mf

� �
Gðlf xoÞ; ð5aÞ

d
dt
hv2

z i � hvzi2
n o� �

o
¼ AD

xo
Gðlf xoÞ; ð5bÞ
and
d
dt

v2
?

� �
� hv?i2

n o� �
o
¼ AD

xo
½Uðlf xoÞ � Gðlf xoÞ�: ð5cÞ
where brackets, e.g., hvzi, indicate expectation values. Furthermore, vz ¼ xo � êz, v? ¼ xo � vzêz, êz ¼ xo=xo, l2
f ¼ mf =2T ,
UðxÞ ¼ 2=
ffiffiffiffi
p
p� � Z x

0
e�y2

dy; ð6aÞ

GðxÞ ¼ ½UðxÞ � xU0ðxÞ�=2x2; ð6bÞ
U0(x) = dU(x)/dx, AD ¼ 8pnf q2
t q2

f ln K=m2
t , and lnK is the Coulomb logarithm.
Field
particles

Test
particle

dθ

dφ

ω + dω

Fig. 1. Velocity space spherical polar coordinates that describe differential changes in the velocity difference vector x = vt � vf.



1394 D.S. Lemons et al. / Journal of Computational Physics 228 (2009) 1391–1403
2.4. Characterizing parameters defined

Here we describe some of the calculations that lead to defining the parameters c, b, and d2, of the stochastic process (4)
that incorporate the diffusion coefficients (5). Note that in a frame at rest with respect to the average velocity of the pre-scat-

tered field particles, the test particle velocity vt Cartesian component speeds vz and v? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

x þ v2
y

q
are related to the com-

ponents of x by
vz ¼ xz; ð7aÞ
and
v? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

x þx2
y

q
: ð7bÞ
In terms of polar coordinates
dxz ¼ d½x cos h� ¼ ðxþ dxÞ cosðhþ dhÞ �x cosðhÞ ¼ ðxþ dxÞ cosðdhÞ �x cosð0Þ
¼ ðxþ dxÞð1� dh2=2þ � � �Þ �x ¼ �xdh2=2þ dx� dxdh2=2þ � � � ; ð8Þ
since h(t = 0) = 0. Given (4a) and (4c), Eq. (8) becomes
dxz ¼ �xcdtN2
hð0;1Þ �xbdt þ

ffiffiffiffiffiffiffiffiffiffi
d2dt

p
Nxð0;1Þ; ð9Þ
where we have dropped terms smaller than order dt. One novelty of taking derivatives of stochastic variables is that the term
(dh)2 is the same order as dt. Taking the expectation value of both sides of (9) and specializing to the initial condition x = xo

produces an initial rate
dhxzi
dt

� �
o

¼ �xoðco þ boÞ; ð10Þ
since hNh(0,1)i = 0 and N2
xð0;1Þ

D E
¼ 1. Note that since xo is a sure, i.e., non-stochastic, variable
hxo½cðxoÞ þ bðxoÞ�i ¼ xoðco þ boÞ: ð11Þ
Also note that in (10) and (11), we adopt the notation co = c(xo) and bo = b(xo). Eqs. (5a) and (7a) are consistent with (10)
only if
1þmt

mf

� �
l2
f ADGðlf xoÞ ¼ xoðco þ boÞ: ð12Þ
Similar calculations show that, as expected, dhxxi = dhxyi = 0 and, with somewhat greater effort,
dhðxz � hxziÞ2i
dt

 !
o

¼ d2
o ; ð13Þ
and
dhðxx � hxxiÞ2 þ ðxy � hxyiÞ2i
dt

 !
o

¼ 2cox
2
o : ð14Þ
Eqs. (13) and (14) are consistent with the velocity diffusion rates (5b) and (5c) only if
AD

xo
Gðlf xoÞ ¼ d2

o ; ð15Þ
and
AD

xo
½Uðlf xoÞ � Gðlf xoÞ� ¼ 2cox

2
o : ð16Þ
The three requirements (12), (15), and (16) can be solved for the three functions c(x), b(x), and d2(x) that define the sto-
chastic process (4). Doing so, we find that
cðxÞ ¼ AD

2x3 ½Uðlf xÞ � Gðlf xÞ�; ð17aÞ

bðxÞ ¼ AD

2x3 Gðlf xÞ 1þmt

mf

� �
2x2l2

f þ 1
	 


�Uðlf xÞ
� �

; ð17bÞ
and
d2ðxÞ ¼ ADGðlf xÞ
x

: ð17cÞ



D.S. Lemons et al. / Journal of Computational Physics 228 (2009) 1391–1403 1395
In what follows we will also need the derivative
dd2

dx
¼ �3ADGðlf xÞ þ ADlf xU0ðlf wÞ

x2 : ð17dÞ
2.5. Finite difference equations

A simple Euler update solution of (4) replaces differential quantities with finite differences (for example, dh ? Dh and
dt ? Dt) and evaluates all variables at the beginning of the time step Dt. An update of (4) that also includes the next higher
order term, the so-called Milstein term [22], in the Taylor series expansion is
hðt þ DtÞ ¼ hðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffi
2cDt

p
Nh;Dtð0;1Þ; ð18aÞ

/ðt þ DtÞ ¼ /ðtÞ þ 2pU/;Dtð0;1Þ; ð18bÞ
and
20
xðt þ DtÞ ¼ xðtÞ � bxðtÞDt þ
ffiffiffiffiffiffiffiffiffiffi
d2Dt

p
Nx;Dtð0;1Þ þ

d
4
½Nx;Dtð0;1Þ2 � 1�Dt; ð18cÞ
where d20 ¼ dd2=dx, and all time-dependent quantities c, b, d2, and d20 on the right hand side of (18) are evaluated at time t.

Because the Milstein term ðd20=4Þ½Nx;Dtð0;1Þ2 � 1�Dt, in (18c) has mean zero and standard deviation d20Dt=ð2
ffiffiffi
2
p
Þ it is smal-

ler by a factor of
ffiffiffiffiffiffi
Dt
p

than the stochastic term
ffiffiffiffiffiffiffiffiffiffi
d2Dt

p
Nx;Dtð0;1Þ with mean zero and standard deviation

ffiffiffiffiffiffiffiffiffiffi
d2Dt

p
. Thus, the

Milstein term may be dropped if only leading order accuracy is required. However, including the Milstein term increases
the convergence order of the Euler update equation from 0.5 to 1.0 [22]. In the numerical tests reported in Section 3, we
include the Milstein term although we see no discernible differences when we leave it out.

The size of the time step Dt in the finite difference equations (18) is limited by the requirement that terms left out of the
Taylor series expansion that generates (18) remain small compared to those included. Kloeden and Platen [22] identify
deterministic terms of order Dt2 and stochastic terms whose standard deviation is of order Dt3/2 that have been dropped
in generating (18). Because each of the dropped terms has coefficients that are functions of the variable x, a precise bound
on Dt is, in general, problem dependent. Here we note that, apart from terms and bounded functions of order one, the bound
on Dt scales as m1Dt < 1 where m1 the self-relaxation collision frequency m1 ¼ ADl3

f used in Section 3.
In fact, some of the functions c(x), b(x), d2(x), and d20 ðxÞ diverge in the limit x ? 0. In particular, to leading order in

small x, cðxÞ � 2=3
ffiffiffiffi
p
p� �
ðADlf =x2Þ, bðxÞ � � 3=3

ffiffiffiffi
p
p� �
ðADlf =x2Þ, d2ðxÞ � 2=3

ffiffiffiffi
p
p� �

ADlf , and d20 ðxÞ � 0. For this reason, the fi-
nite difference equations (18c) will boost small-x particles to an unphysically large value of x(t + Dt). We avoid this prob-
lem by noting that when x is very small the deterministic term dominates the stochastic term in the stochastic differential
equation (4c) from which (18c) or any alternative to it must be derived. Therefore, when x is sufficiently small we drop the
stochastic term from (4c) and so generate a deterministic equation of motion
dx ¼ 2ADlf

3
ffiffiffiffi
p
p dt

x
; ð19Þ
whose solution is
xðt þ DtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ 4

3
ffiffiffiffi
p
p ADlf Dt

s
: ð20Þ
Comparing (20) to the Euler finite difference solution (18c) reveals the meaning of ‘‘sufficiently small”. Solution (20) differs
from the small-x limit of the deterministic part of (18c) only when
x2
6

4
3
ffiffiffiffi
p
p ADlf Dt ð21Þ
where x2 = x2(t). In terms of the multi-fluid collision frequency mo ¼ ADl3
f =2 inequality (21) becomes
ðxlf Þ2 6
8

3
ffiffiffiffi
p
p ðm1DtÞ: ð22Þ
Inequality (21) or, equivalently, (22) defines the regime in which (20) should replace (18c).
Eq. (18a) may also boost the polar angle h to unphysically large, if normally distributed, values when x is small, yet, be-

cause h is an angle, this causes no conceptual or numerical problems.

2.6. From local to lab frame coordinates

Recall that scattering stretches or compresses the magnitude of the local velocity difference vector x from x to
xnew = x + Dx and rotates x through the azimuthal and longitudinal angles Dh and D/. Thus, the net result of scattering
is to transform x from the Cartesian vector (0,0,x) to (xnew sinDhcosD/,xnew sinDhsinD/,xnew cosDh).



1396 D.S. Lemons et al. / Journal of Computational Physics 228 (2009) 1391–1403
In order to shift this vector back to the lab velocity frame we must reverse the order of operations that earlier took it from

the lab frame to its local velocity frame. The desired operations are: (1) rotate xnew azimuthally through h, (2) rotate the

result longitudinally through /, and (3) add vf to the result. These transformations are accomplished by [23]
vðt þ DtÞ ¼ v f þ
cos h cos / � sin / sin h cos /

cos h sin / cos / sin h sin /

� sin h 0 cos h

0
B@

1
CA

xnew sin Dh cos D/

xnew sin Dh sin D/

xnew cos Dh

0
B@

1
CA: ð23Þ
Consequently, the lab frame velocity shift of the ith particle caused by collisions is described by
Dv i ¼ v iðt þ DtÞ � v iðtÞ: ð24Þ
2.7. Conservation of momentum and energy

While the expectation value of the total momentum and kinetic energy constructed from the set of lab frame velocity
shifts Dvi, i = 1, . . .,N + 1, is conserved, the total momentum and kinetic energy actually realized by one set of random vari-
ables may not be conserved. One way to force conservation of total momentum and kinetic energy each time step, and so
avoid a noise induced cooling or heating instability [24], is to linearly transform the lab frame post-collision velocities
vi(t + Dt) where i = 1, . . .,N + 1 in such a way as to achieve the desired effect. Such was the method of Jones et al. [17] and
Manheimer et al. [18].

However, we found that linearly transforming the velocities vi(t + Dt) distorts the distribution function in ways that lin-
early transforming the velocity increments Dvi does not. For example, if collisions accelerated a few particles on the tails of
the distribution to much higher velocities, conserving energy by reducing the length of the tails would be more appropriate
than linearly shifting the entire distribution. Therefore, we look for a linear transformation of the velocity increments
Dv i ! Dv 0i where
Dv 0i ¼ aðDv i � bÞ; ð25Þ
and the random variables a and b are chosen in order to conserve momentum and energy, that is, so that
XNþ1

i¼1

miðv i þ Dv 0iÞ ¼
XNþ1

i¼1

miv i; ð26Þ
and
XNþ1

i¼1

mi

2
ðv i þ Dv 0iÞ

2 ¼
XNþ1

i¼1

mi

2
v2

i ; ð27Þ
where vi = vi(t). The solution to Eqs. (25)–(27) is
a ¼
�2
PNþ1

i¼1 miv i � Dv i �
PNþ1

i¼1
miDv iPNþ1

i¼1
mi

� �
PNþ1

i¼1 mi Dv i �
PNþ1

i¼1
miDv iPNþ1

i¼1
mi

� �2 ; ð28Þ
and
b ¼
PNþ1

i¼1 miDv iPNþ1
i¼1 mi

: ð29Þ
Eqs. (28) and (29) define the linear transformation Dv i ! Dv 0i that preserves total momentum and kinetic energy between
each step of the recursion.
3. Test problems

Here we report on two velocity space simulations that implement the particle-moment collision algorithm: one in which
a single component plasma with a finite uniform velocity distribution relaxes to a Maxwellian and another in which two
equal density, equal mass, Maxwellian components with different initial temperatures relax to a single Maxwellian. We
study the effect of varying the time step size Dt and the number of computational particles N on each simulation. Time steps



D.S. Lemons et al. / Journal of Computational Physics 228 (2009) 1391–1403 1397
Dt and times t are normalized to a self-collision relaxation rate m1 ¼ ADl3
f associated with the first component if there is more

than one component. Thus,
Fig. 2.
(c) m1t =
m1 ¼
p
ffiffiffi
8
p

e4Z2
1n1 ln Kffiffiffiffiffiffiffi

m1
p

T3=2
1

: ð30Þ
We have also performed simulations of plasma components with different masses and mean velocities but do not report on
these here.

3.1. Relaxation of uniform cube in velocity space

Test problem 1 simulates the relaxation of a single plasma component from an initial uniform cube in three-dimensional
velocity space to a Maxwellian [17]. This process cannot be described in terms of simple functional forms. We implement it
here because historically this process has quantified the numerical collision rate in PIC codes [25]. The uniform cube is
extended in each velocity space direction so that �31/2

6 vj 6 31/2 where j = x, y, z. Given these limits Tx = Ty = Tz = 1 where
Tx = h(vx � hvxi)2i, etc. and the bracket indicates an average over all particles. For example, the average hvxi ¼

P
f ðvxÞvx

where f(vx) is the fraction of particles in the velocity bin surrounding the vx velocity and the sum is over all velocity bins
in vx space. We use 500 simulation particles to represent the distribution and a normalized time step of Dt = 0.025.

The average of the initial, that is, t = 0, velocity space distributions, f(v) = (1/3)[f(vx) + f(vy) + f(vz)], is shown in panel (a) of
Fig. 2. The smooth solid curve is the Maxwellian distribution to which this distribution relaxes. The distributions f(v) at var-
ious normalized times, (b) t = 1, (c) t = 2, and (d) t = 3, are shown in these panels. Already by t = 1, a Maxwellian distribution
has been achieved.

Panels (a) and (b) of Fig. 3 show, respectively, histories of the kurtosis and entropy of the particles in this simulation. The
kurtosis is defined by K = h(v � hvi)4i/h(v � hvi)2i2 and thus is very sensitive to particles within the tails of the distribution.
The initial cubic velocity distribution has a kurtosis K = 1.6 and evolves in panel (a) toward a Maxwellian with K = 3. We de-
fine the entropy with SðtÞ ¼ �

P
fi ln fi where the sum is over velocity bins and fi is, as above, the average distribution in one

bin and plot in panel (b) the entropy difference DS = S(t) � S(0). Since Sð0Þ ¼ ln 2
ffiffiffi
3
p �

and S(1) = 0.5, DS(t) begins at 0 and
approaches 0.18. The entropy difference DS increases quite rapidly to DS � 0.12 near t � 0.5 and thereafter more slowly.

Fig. 4, panels (a)–(d), show the effect of using different time steps Dt. In particular, panel (a) shows histories of the
kurtosis on the interval 0 6 t 6 4 for Dt = 0.0025 (dotted line), Dt = 0.025 (solid line), and Dt = 0.25 (dashed line). Panels
(b), (c), and (d) show histograms of the distribution function at t = 1 for the three time steps. The smallest time step simu-
lation, with Dt = 0.0025, does produce an equilibrium value of its kurtosis more quickly than the others, but differences
among the three histograms at t = 1 are, apart from noise, not significant. If one’s purpose is to keep the particle distributions
near Maxwellian, an economically large time step, say, with Dt = 0.25, appears sufficient.
Test case 1. Relaxation of uniform velocity space cube with m1Dt = 0.025 and N = 500. The average distribution (histogram) at: (a) m1t = 0, (b) m1t = 1,
2, and (d) m1t = 3 superimposed on equilibrium Maxwellians (smooth curves).



Fig. 3. Test case 1. Time histories of: (a) the kurtosis K(t) and (b) the entropy increase S(t) � S(0).

Fig. 4. Test case 1 with different time steps m1Dt. Time histories of (a) the kurtosis with normalized time step m1Dt = 0.025 (solid curve), m1Dt = 0.0025
(dotted curve) and m1Dt = 0.25 (dashed curve) and average distributions (histograms) at m1t = 1 for (b) m1Dt = 0.025, (c) m1Dt = 0.0025, and (d) m1Dt = 0.25
superimposed on equilibrium Maxwellians (smooth curves).

1398 D.S. Lemons et al. / Journal of Computational Physics 228 (2009) 1391–1403
3.2. Two-temperature relaxation

Test problem 2 simulates the relaxation of two, equal mass, m1 = m2 = m, equal density, n1 = n2 = n, plasma components
with different initial temperatures, T1o and T2o = 4T1o. If both components remain Maxwellian, their temperatures, T1 and T2,
evolve according to the fluid equations
dT1

dt
¼ �lðT1 � T2Þ; ð31aÞ
and
dT2

dt
¼ �lðT2 � T1Þ: ð31bÞ



Fig. 5. Test case 2. Two-temperature relaxation with n2/n1 = 1, m2/m1 = 1, and T2/T1 = 4. Time histories of: (a) the temperatures of the two species (solid
curves) and fluid theory temperatures (dotted curves), (b) particle temperature minus fluid temperature over fluid temperature for each species (solid
curves), and (c) kurtosis of the two species (solid curves) and fluid theory kurtosis (dotted line).

Fig. 6. Test case 2. Velocity distributions. Upper panels (a) and (b) refer to the colder component while lower panels (b) and (c) refer to the hotter
component. Left panels (a) and (b) show the distribution functions at t = 20 histograms (solid) and initial Maxwellians (dotted), while right panels (c) and
(d) are plots of log f(v) versus v2 at t = 20 (solid) and initial and final Maxwellians (dotted).

D.S. Lemons et al. / Journal of Computational Physics 228 (2009) 1391–1403 1399
These equations conserve total energy, T1 + T2, and imply a relaxation time (2l)�1 given by [20,26]
ð2lÞ�1 ¼ 3
ffiffiffiffiffi
m
p
ðT1 þ T2Þ3=2

16
ffiffiffiffiffiffiffi
2p
p

nZ4e4 ln K
: ð32Þ
Therefore, the normalized relaxation time m1/2l = 7.4.
Figs. 5 and 6 describe simulations with 5000 particles representing each component and a time step Dt = 0.25. These par-

ticular numbers reproduce the simulation described in Fig. 1 of Rambo and Procassini [26] and by others [7,17]. The unit of
time used in Rambo and Procassini, t = 1 ps, corresponds to our normalized time t = 17.

Fig. 5, panel (a), shows time histories of the temperatures of each component as determined by the particle-moment col-
lision algorithm (solid curves) and the fluid theory described by (31) (dotted curves). In order to better show the small



Fig. 7. Test case 2 with time step Dt = 0.025. Time histories of the particle temperature of the hotter species minus the fluid temperature of the hotter
species divided by the fluid temperature of the hotter species. Particle-moment collision algorithm (solid curve) and particle-pairing collision algorithm
(dashed curve) histories are shown.

1400 D.S. Lemons et al. / Journal of Computational Physics 228 (2009) 1391–1403
difference between particle and fluid results we plot, in panel (b), the difference in the temperatures predicted by the two
models divided by the fluid temperature. Note that the fluid and particle temperatures differ by at most about 5% between
t = 15 and 35 and by less elsewhere. Presumably, the particle results are more accurate because they include small deviations
from Maxwellian distributions caused both by collisions between particles from different components and by self-collisions
within each component. Because energy is conserved, the sum of the two temperatures, T1 + T2, is a constant. For this reason
the temperature histories in panel (b) are anti-symmetric. Panel (b) shows the kurtosis of each component as a function of
time.

The four panels of Fig. 6 show average distributions at normalized time t = 20 – almost three relaxation times into the
simulation. The top panels, (a) and (c), describe the initially colder distribution; the bottom panels, (b) and (d), describe
the initially hotter distribution. The histograms on the left, in panels (a) and (b), appear by t = 20 to reproduce equilibrium
Maxwellians, but the associated ln(f) versus v2 plots on the right, in panels (c) and (d), show how these deviate from Max-
wellians in their tails. Since the collision rate varies as v�3, the tails relax more slowly than the core of the velocity distri-
bution. Recall that, as shown in Fig. 5, panel (c), the initially hotter species maintains a relatively large kurtosis for a
relatively long period of time.

Fig. 7 shows the temperature of the hotter component as determined by the particle-moment collision algorithm minus
the hotter component temperature predicted by fluid theory divided by the latter for a simulation with Dt = 0.025 and
N = 20,000 (solid curve). Fig. 7 also shows (dashed curve) this quantity as determined by the particle-pairing collision algo-
rithm of Takizuka and Abe [5] implement in the VPIC particle-in-cell code running the same problem with more particles and
Fig. 8. Test case 2 with Dt = 0.25 and different particle numbers N. Time histories of the particle temperature of the hotter species minus the fluid
temperature of the hotter species divided by the fluid temperature of the hotter species computed with the particle-moment collision algorithm. Curves are
for N = 70,000 (solid), N = 5000 (dotted), and N = 1250 (dashed).



Fig. 9. Test case 2 with N = 20,000 and different time steps m1Dt where m = m1. Time histories of hotter temperature normalized to the hotter fluid
temperature as computed by the particle-moment collision algorithm. Curves are for mDt = 0.025 (solid), mDt = 0.35 (dashed), and mDt = 3.5 (dotted).

D.S. Lemons et al. / Journal of Computational Physics 228 (2009) 1391–1403 1401
the same time step Dt = 0.025. (See the Appendix for a description of VPIC and details of this simulation.) Here we note that
the particle-moment and particle-pairing algorithms produce, within noise levels, the same results.

Figs. 8 and 9 show how particle-moment collision algorithm simulations vary with component particle number N and
time step Dt. Here we continue to plot the hotter particle temperature minus the hotter fluid temperature divided by the
latter. Fig. 8 shows the history of this quantity when Dt = 0.025 and N = 20,000 (20,000 particles representing each compo-
nent – solid curve), N = 5000 (reproduced from Fig. 5, panel (b) – dotted curve), and N = 1250 (dashed curve). Apart from the
expected difference in fluctuation level these histories manifest the same trend.

Fig. 9 shows three time histories of the relative difference between the hot particle temperature and the fluid theory tem-
perature with N = 5000 and Dt = 0.025 (solid curve), Dt = 0.35 (dashed curve), and Dt = 3.5 (dotted curve). Recall that t = 7.4
is the relaxation time. Not until the largest time step, comprising almost 50% of a relaxation time, does the temperature as
calculated with the particle-moment collision algorithm deviate by as much as 20% from its converged small time step value.
Note that when the particle-moment collision algorithm begins to loose integrity it does so by moving the temperature clo-
ser to that predicted by fluid theory. In contrast, according to results discussed in the Appendix, the implementation of the
particle-pairing collision algorithm on VPIC running the same problem loses integrity by a similar amount, but in the oppo-
site direction, with a time step of between 1% and 5% of a relaxation time.

4. Conclusions

We have introduced a new small-angle scattering Coulomb collision algorithm, the particle-moment method, based on
the original formulation of Chandreskar [19] and Spitzer [20]. In this method, we treat the self-interaction of a cloud of N
charged particles in each computational cell by representing them as a Maxwellian velocity distribution (or a series of such
distributions if they the cloud deviates significantly from a single-humped velocity distribution) and considering each
particle in the cloud as a test particle that interacts with the remaining particles. The particle-moment collision algorithm
retains the velocity-dependent collision cross-section of the Coulomb interaction and can be made energy and momentum
conserving by linearly shifting the particle velocity increments each time step.

Numerical simulations of two test problems in which plasma components relax to an equilibrium state via the particle-
moment collisional algorithm converge to each other, in the limit of large particle number N and small time step Dt, and to
simulations of the same interaction modeled with a particle-pairing collision algorithm. The particle-moment collision algo-
rithm maintains integrity with time steps up to 10–50% of the relaxation time while the particle-pairing collision algorithm
loses integrity in the same degree with time steps of approximately 1–5% of the relaxation time. The relative efficiency of the
particle-moment algorithm is, in this case, expected. After all, the particle-moment algorithm requires N calculations each
time step in order that each of N particles collisionally interact with all other particles. In contrast, the particle-pairing algo-
rithm requires approximately N2/2 calculations in order that each particle collisionally interact with all other particles. Of
course, the relative effectiveness and accuracy of any collision method is, to some extent, problem dependent. Since the par-
ticle-moment collision algorithm models collisions between individual test particles and Maxwellian field particles, we sus-
pect it may be most accurate when the plasma or plasma components are close to equilibrium. When there are significant
deviations from Maxwellian distributions (e.g., bump-on-tail), a straightforward generalization, as suggested by Manheimer
et al. [17] and others, is to split the distribution into several sub-distributions and model each sub-distribution as a Maxwell-
ian. Yet more complex situations may require particle-pairing.



Fig. 10. Test case 2 as computed in VPIC using the particle-pairing algorithm with different time steps m1Dt where m = m1. Time histories of hotter
temperature normalized to the hotter fluid temperature. Curves are for: mDt = 0.0026 (dotted curve), mDt = 0.0087 (solid curve), mDt = 0.087 (dashed curve),
and mDt = 0.69 (dash-dot curve).

1402 D.S. Lemons et al. / Journal of Computational Physics 228 (2009) 1391–1403
Acknowledgments

This work is supported at Los Alamos by the NW Supporting Research Program. The authors acknowledge helpful conver-
sations with Bruce Cohen of Lawrence Livermore National Laboratory.

Appendix. Particle-pairing collision algorithm in VPIC

VPIC is an explicit, fully relativistic, three-dimensional, particle-in-cell (PIC) simulation code carefully designed to achieve
optimum performance on modern computing clusters [27]. Essentially, all high-performance PIC codes rely heavily on par-
ticle sorting to ensure data locality and to optimize cache performance. The VPIC code employs a highly efficient order N
in-place counting sort [28] to order the particle array on the cell index. In addition to improving the overall performance,
this sorting produces a key array that permits rapid access of the range of particle indices within each computational cell,
a crucial piece of information required in particle-pairing collision algorithms.

For these reasons, the design of the VPIC code permits a highly efficient implementation of the particle-pairing algorithm
[5]. However, the computational cost of performing this collision operation remains quite high and the overall performance
of a large-scale simulation would be negatively impacted if the collision operation was performed every PIC time step. In
order to evaluate how often the collision step may be sub-cycled while still retaining good accuracy, we simulate the tem-
perature equilibration test problem described in Section 3.2.

The VPIC calculations were performed with 3 � 3 � 3 cells, 6000 particles per cell and periodic boundary conditions. Sub-
cycling of the particle-pairing algorithm was varied from every 30 PIC time steps (m1Dt = 0.0026) up to 8000 PIC time steps
(m1Dt = 0.69). As illustrated in Fig. 10, the accuracy of the particle-pairing scheme is visibly degraded when the sub-cycling of
the collision operation exceeds a few percent of the relaxation time. Thus, in weakly collisional regimes, it is possible to
aggressively sub-cycle while retaining high accuracy, but in more collisional regimes the need to resolve the relaxation time
scale will require the collision operation to be performed frequently. In these regimes, the particle-moment collision algo-
rithm proposed here has a distinct advantage over particle-pairing.

References

[1] R.A. Bosch, R.L. Berger, B.H. Failor, N.D. Delamater, G. Charatis, R.L. Kauffman, Phys. Fluids B 4 (1992) 979.
[2] L.S. Brown, D.L. Preston, R.L. Singleton, Phys. Rep. 410 (2005) 237.
[3] F. Vidal, J.P. Matte, M. Casanova, O. Larroche, Phys. Rev. E 52 (1995) 4568.
[4] C. Castaldo, U. de Angelis, V.N. Tsytovich, Phys. Rev. Lett. 96 (2006) 075004.
[5] T. Takizuka, H. Abe, J. Comput. Phys. 25 (1977) 205.
[6] K. Nanbu, S. Yonemura, J. Comput. Phys. 145 (1998) 639.
[7] D.J. Larson, J. Comput. Phys. 188 (2003) 123.
[8] S. Ma, R.D. Sydora, J.M. Dawson, Comput. Phys. Commun. 77 (1993) 190.
[9] R.H. Miller, M.R. Combi, Geophys. Res. Lett. 21 (1994) 1735.

[10] C. Wang, T. Lin, R. Caflisch, B.I. Cohen, A.M. Dimits, J. Comput. Phys. 227 (2008) 4308.
[11] R. Caflisch, C.M. Wang, B.I. Cohen, A.M. Dimits, Multiscale Model. Simul. (2008) 865.
[12] S.E. Parker, Y. Chen, W. Wan, B.I. Cohen, W.M. Nevins, Phys. Plasmas 11 (2004) 2594.
[13] R.L. Berger, J.R. Albritton, C.J. Randall, E.A. Williams, W.L. Kruer, A. Langdon, C.J. Hanna, Phys. Fluids B 3 (1991) 3.



D.S. Lemons et al. / Journal of Computational Physics 228 (2009) 1391–1403 1403
[14] P.W. Rambo, J. Denavit, J. Comput. Phys. 98 (1992) 317.
[15] P.W. Rambo, J. Denavit, Phys. Plasmas 1 (1994) 4050.
[16] M. Sherlock, J. Comput. Phys. 227 (2008) 2286–2292.
[17] M.E. Jones, D.S. Lemons, R.J. Mason, V.A. Thomas, D. Winske, J. Comput. Phys. 123 (1996) 169.
[18] W.M. Manheimer, M. Lampe, G. Joyce, J. Comput. Phys. 138 (1993) 563.
[19] S. Chandrasekhar, Ap. J. 97 (1943) 255.
[20] L. Spitzer Jr., Physics of Fully Ionized Gases, Wiley, New York, 1962. pp. 120–154.
[21] D.S. Lemons, An Introduction to Stochastic Processes in Physics, Johns Hopkins, Baltimore, 2002. pp. 101–102.
[22] P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1992. pp. XVII–XVIII.
[23] F.W. Byron, Jr., R.W. Fuller, Mathematics of Classical and Quantum Physics, Addison-Wesley, Reading, MA, 1969, p. 5ff.
[24] D.S. Lemons, J. Lackman, Phys. Rev. E 52 (1995) 6855.
[25] J.M. Dawson, Phys. Fluids 7 (1964) 419.
[26] P. Rambo, R.J. Procassini, Phys. Plasmas 2 (1993) 3130.
[27] K.J. Bowers, B.J. Albright, L. Yin, B. Bergen, T.J.T. Kwan, Phys. Plasmas 15 (2008) 055703, 1–7.
[28] K.J. Bowers, J. Comput. Phys. 173 (2001) 393–411.


	Small-angle coulomb Coulomb collision model for particle-in-cell simulations
	Introduction
	Collision algorithm
	From lab frame to local particle coordinates
	Stochastic differential equations
	Collision rates
	Characterizing parameters defined
	Finite difference equations
	From local to lab frame coordinates
	Conservation of momentum and energy

	Test problems
	Relaxation of uniform cube in velocity-spacevelocity space
	Two-temperature relaxation

	Conclusions
	AcknowledgementAcknowledgments
	Particle-pairing collision algorithm in VPIC
	References


